火狐体育

Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality

報告題目:Tilting modules, dominant dimensions and Brauer-Schur-Weyl duality

報告時間:20211210900-10:00

報告地點:(線上)騰訊會議ID925 938 603   會議密碼:1210

報告人簡介:肖占魁,博士畢業于北京理工大學,研究代數學及其應用。研究內容涉及典型群與量子群的不變量理論;有限維代數的表示理論與組合,包含其在博弈論、量子信息科學等領域的應用;非交換環理論與算子代數。與胡峻教授合作證明了(量子)辛群不變量理論的第二基本定理。

報告摘要:This  talk is based on a joint work with Jun Hu, which comes from our second  attempt for studying the invariant theory of quantized orthogonal  groups. We use the dominant dimension to study the double centralizer  property and provide a criterion for a tilting module of a standardly  stratified algebra satisfying the double centralizer property. Moreover,  if A is a quasi-hereditary algebra with a simple preserving duality and  T is a faithful tilting A-module, then A has the double centralizer  property with respect to T. We also affirmatively answer an open  question of Mazorchuk and Stroppel.
火狐体育